{ "id": "2102.02497", "version": "v1", "published": "2021-02-04T09:15:41.000Z", "updated": "2021-02-04T09:15:41.000Z", "title": "A Rauzy fractal unbounded in all directions of the plane", "authors": [ "Mélodie Andrieu" ], "categories": [ "math.DS", "math.CO" ], "abstract": "We construct an Arnoux-Rauzy word for which the set of all differences of two abelianized factors is equal to $\\mathbb{Z}^3$. In particular, the imbalance of this word is infinite - and its Rauzy fractal is unbounded in all directions of the plane.", "revisions": [ { "version": "v1", "updated": "2021-02-04T09:15:41.000Z" } ], "analyses": { "keywords": [ "rauzy fractal", "directions", "arnoux-rauzy word", "differences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }