{ "id": "2102.02104", "version": "v1", "published": "2021-02-03T15:18:04.000Z", "updated": "2021-02-03T15:18:04.000Z", "title": "The size of an exceptional sequence can be arbitrarily large", "authors": [ "Hipolito Treffinger" ], "categories": [ "math.RT", "math.RA" ], "abstract": "In this short note we show that the size of an exceptional sequence in the module category of a finite dimensional algebra $A$ can be arbitrarily large in comparison to the number of isomorphism classes of simple $A$-modules. We do so by constructing an exceptional sequence in the module category of the Auslander algebra of the path algebra of the linearly oriented $\\mathbb{A}_n$ quiver.", "revisions": [ { "version": "v1", "updated": "2021-02-03T15:18:04.000Z" } ], "analyses": { "keywords": [ "exceptional sequence", "arbitrarily large", "module category", "finite dimensional algebra", "short note" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }