{ "id": "2102.02037", "version": "v1", "published": "2021-02-03T12:44:09.000Z", "updated": "2021-02-03T12:44:09.000Z", "title": "The isometry group of Wasserstein spaces: the Hilbertian case", "authors": [ "György Pál Gehér", "Tamás Titkos", "Dániel Virosztek" ], "comment": "30 pages, 2 figures", "categories": [ "math.MG", "math-ph", "math.FA", "math.MP", "math.PR" ], "abstract": "Motivated by Kloeckner's result on the isometry group of the quadratic Wasserstein space $\\mathcal{W}_2\\left(\\mathbb{R}^n\\right)$, we describe the isometry group $\\mathrm{Isom}\\left(\\mathcal{W}_p (E)\\right)$ for all parameters $0 < p < \\infty$ and for all separable real Hilbert spaces $E.$ In fact, the $01$, by solving Kloeckner's problem affirmatively on the existence of mass-splitting isometries.", "revisions": [ { "version": "v1", "updated": "2021-02-03T12:44:09.000Z" } ], "analyses": { "subjects": [ "54E40", "46E27", "60A10", "60B05" ], "keywords": [ "isometry group", "hilbertian case", "separable real hilbert spaces", "quadratic wasserstein space", "strict triangle inequality" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }