{ "id": "2102.01967", "version": "v1", "published": "2021-02-03T09:37:12.000Z", "updated": "2021-02-03T09:37:12.000Z", "title": "On monogenity of certain pure number fields defined by $x^{p^r}-m$", "authors": [ "Hamid Ben Yakkou", "Lhoussain El Fadil" ], "comment": "Submitted. arXiv admin note: text overlap with arXiv:2006.11230", "categories": [ "math.NT" ], "abstract": "Let $K = \\mathbb{Q} (\\alpha) $ be a pure number field generated by a complex root $\\alpha$ a monic irreducible polynomial $ F(x) = x^{p^r} -m$, with $ m \\neq 1 $ is a square free rational integer, $p$ is a rational prime integer, and $r$ is a positive integer. In this paper, we study the monogenity of $K$. We prove that if {{$\\nu_p(m^p-m)=1$}}, then $K$ is monogenic. But if $r\\ge p$ and {$\\nu_p(m^{p}-m)> p$}, then $K$ is not monogenic. Some illustrating examples are given.", "revisions": [ { "version": "v1", "updated": "2021-02-03T09:37:12.000Z" } ], "analyses": { "subjects": [ "11R04", "11R16", "11R21" ], "keywords": [ "pure number field", "monogenity", "square free rational integer", "rational prime integer", "complex root" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }