{ "id": "2102.01616", "version": "v1", "published": "2021-02-02T17:18:27.000Z", "updated": "2021-02-02T17:18:27.000Z", "title": "Divergence of an integral of a process with small ball estimate", "authors": [ "Yuliya Mishura", "Nakahiro Yoshida" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "The paper contains sufficient conditions on the function $f$ and the stochastic process $X$ that supply the rate of divergence of the integral functional $\\int_0^Tf(X_t)^2dt$ at the rate $T^{1-\\epsilon}$ as $T\\to\\infty$ for every $\\epsilon>0$. These conditions include so called small ball estimates which are discussed in detail. Statistical applications are provided.", "revisions": [ { "version": "v1", "updated": "2021-02-02T17:18:27.000Z" } ], "analyses": { "keywords": [ "small ball estimate", "divergence", "paper contains sufficient conditions", "stochastic process", "integral functional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }