{ "id": "2102.01278", "version": "v1", "published": "2021-02-02T03:34:47.000Z", "updated": "2021-02-02T03:34:47.000Z", "title": "Kazhdan-Lusztig polynomials for $\\tilde{B}_2$", "authors": [ "Karina Batistelli", "Aram Bingham", "David Plaza" ], "comment": "Comments welcome", "categories": [ "math.RT", "math.CO" ], "abstract": "Kazhdan and Lusztig define, for an arbitrary Coxeter system $(W,S)$, a family of polynomials indexed by pairs of elements of $W$. Despite their relevance and elementary definition, the explicit computation of these polynomials is still one of the hardest open problems in algebraic combinatorics. In this paper we explicitly compute Kazhdan-Lusztig polynomials for a Coxeter system of type $\\tilde{B}_2$.", "revisions": [ { "version": "v1", "updated": "2021-02-02T03:34:47.000Z" } ], "analyses": { "keywords": [ "kazhdan-lusztig polynomials", "arbitrary coxeter system", "hardest open problems", "lusztig define", "algebraic combinatorics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }