{ "id": "2102.01277", "version": "v1", "published": "2021-02-02T03:28:26.000Z", "updated": "2021-02-02T03:28:26.000Z", "title": "On weighted compactness of commutators of Schrödinger operators", "authors": [ "Qianjun He", "Pengtao Li" ], "comment": "25pages", "categories": [ "math.CA" ], "abstract": "Let $\\mathcal{L}=-\\Delta+\\mathit{V}(x)$ be a Schr\\\"{o}dinger operator, where $\\Delta$ is the Laplacian operator on $\\mathbb{R}^{d}$ $(d\\geq 3)$, while the nonnegative potential $\\mathit{V}(x)$ belongs to the reverse H\\\"{o}lder class $B_{q}, q>d/2$. In this paper, we study weighted compactness of commutators of some Schr\\\"{o}dinger operators, which include Riesz transforms, standard Calder\\'{o}n-Zygmund operatos and Littlewood-Paley functions. These results generalize substantially some well-know results.", "revisions": [ { "version": "v1", "updated": "2021-02-02T03:28:26.000Z" } ], "analyses": { "keywords": [ "schrödinger operators", "commutators", "laplacian operator", "littlewood-paley functions", "riesz transforms" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }