{ "id": "2102.00963", "version": "v1", "published": "2021-02-01T16:44:58.000Z", "updated": "2021-02-01T16:44:58.000Z", "title": "Spectrum of Random $d$-regular Graphs Up to the Edge", "authors": [ "Jiaoyang Huang", "Horng-Tzer Yau" ], "comment": "67 pages, 4 figures", "categories": [ "math.PR", "math-ph", "math.CO", "math.MP" ], "abstract": "Consider the normalized adjacency matrices of random $d$-regular graphs on $N$ vertices with fixed degree $d\\geq3$. We prove that, with probability $1-N^{-1+{\\mathfrak c}}$ for any ${\\mathfrak c} >0$, the following two properties hold as $N \\to \\infty$ provided that $d\\geq3$: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten-McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in $N$, i.e. $\\lambda_2, |\\lambda_N|\\leq 2+N^{-\\Omega(1)}$. (ii) All eigenvectors of random $d$-regular graphs are completely delocalized.", "revisions": [ { "version": "v1", "updated": "2021-02-01T16:44:58.000Z" } ], "analyses": { "subjects": [ "60B20", "05C80" ], "keywords": [ "regular graphs", "polynomial error bound", "classical eigenvalue locations", "properties hold", "kesten-mckay distribution" ], "note": { "typesetting": "TeX", "pages": 67, "language": "en", "license": "arXiv", "status": "editable" } } }