{ "id": "2102.00864", "version": "v1", "published": "2021-02-01T14:17:38.000Z", "updated": "2021-02-01T14:17:38.000Z", "title": "Achievable connectivities of Fatou components for a family of singular perturbations", "authors": [ "Jordi Canela", "Xavier Jarque", "Dan Paraschiv" ], "categories": [ "math.DS" ], "abstract": "In this paper we study the connectivity of Fatou components for maps in a large family of singular perturbations. We prove that, for some parameters inside the family, the dynamical planes for the corresponding maps present Fatou components of arbitrarily large connectivity and we determine precisely these connectivities. In particular, these results extend the ones obtained in [Can17, Can18].", "revisions": [ { "version": "v1", "updated": "2021-02-01T14:17:38.000Z" } ], "analyses": { "subjects": [ "37F10", "37F12", "37F20", "37F44", "30D05" ], "keywords": [ "fatou components", "singular perturbations", "achievable connectivities", "parameters inside", "arbitrarily large connectivity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }