{ "id": "2102.00470", "version": "v1", "published": "2021-01-31T15:34:38.000Z", "updated": "2021-01-31T15:34:38.000Z", "title": "A connecting theorem for geodesic flows on the 2-torus", "authors": [ "Stefan Klempnauer" ], "categories": [ "math.DS", "math.DG" ], "abstract": "We use a result of J. Mather on the existence of connecting orbits for compositions of monotone twist maps of the cylinder to prove the existence of connecting geodesics on the unit tangent bundle $ST^2$ of the 2-torus in regions without invariant tori.", "revisions": [ { "version": "v1", "updated": "2021-01-31T15:34:38.000Z" } ], "analyses": { "keywords": [ "geodesic flows", "connecting theorem", "monotone twist maps", "unit tangent bundle", "invariant tori" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }