{ "id": "2102.00269", "version": "v1", "published": "2021-01-30T16:44:31.000Z", "updated": "2021-01-30T16:44:31.000Z", "title": "Ricci curvature and quantum geometry", "authors": [ "Mauro Carfora", "Francesca Familiari" ], "comment": "11 pages", "journal": "International Journal of Geometric Methods in Modern Physics (2020) 2050049 (11 pages)", "doi": "10.1142/S0219887820500498", "categories": [ "math-ph", "math.DG", "math.MP" ], "abstract": "We describe a few elementary aspects of the circle of ideas associated with a quantum field theory (QFT) approach to Riemannian Geometry, a theme related to how Riemannian structures are generated out of the spectrum of (random or quantum) fluctuations around a background fiducial geometry. In such a scenario, Ricci curvature with its subtle connections to diffusion, optimal transport, Wasserestein geometry, and renormalization group, features prominently.", "revisions": [ { "version": "v1", "updated": "2021-01-30T16:44:31.000Z" } ], "analyses": { "keywords": [ "ricci curvature", "quantum geometry", "quantum field theory", "background fiducial geometry", "elementary aspects" ], "tags": [ "journal article" ], "publication": { "publisher": "World Scientific" }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }