{ "id": "2101.12664", "version": "v1", "published": "2021-01-29T16:11:57.000Z", "updated": "2021-01-29T16:11:57.000Z", "title": "Maximal abelian varieties over finite fields and cyclicity", "authors": [ "Elena Berardini", "Alejandro J. Giangreco Maidana" ], "comment": "10 pages, comments are welcome", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $\\mathcal{M}_g^0(q)$ denote the isogeny class (if it is unique) of $g$-dimensional abelian varieties defined over $\\mathbb{F}_q$ with maximal number of rational points among those with endomorphism algebra being a field. We describe a polynomial $h_g(t,X)$ such that for every even power $q$ of a prime and verifying mild conditions, $h_g(t,\\sqrt{q})$ is the Weil polynomial of $\\mathcal{M}_g^0(q)$. It turns out that in this case, $\\mathcal{M}_g^0(q)$ is ordinary and cyclic outside the primes dividing an integer $N_g$ that only depends on $g$. We also give explicitly $h_3(t,X)$ and prove that $\\mathcal{M}_3^0(q)$ is ordinary and cyclic.", "revisions": [ { "version": "v1", "updated": "2021-01-29T16:11:57.000Z" } ], "analyses": { "subjects": [ "11G10", "14G05", "14G15", "14K02" ], "keywords": [ "maximal abelian varieties", "finite fields", "dimensional abelian varieties", "maximal number", "isogeny class" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }