{ "id": "2101.12416", "version": "v1", "published": "2021-01-29T06:06:58.000Z", "updated": "2021-01-29T06:06:58.000Z", "title": "Covariance Prediction via Convex Optimization", "authors": [ "Shane Barratt", "Stephen Boyd" ], "categories": [ "stat.ML", "cs.AI", "cs.LG", "math.OC" ], "abstract": "We consider the problem of predicting the covariance of a zero mean Gaussian vector, based on another feature vector. We describe a covariance predictor that has the form of a generalized linear model, i.e., an affine function of the features followed by an inverse link function that maps vectors to symmetric positive definite matrices. The log-likelihood is a concave function of the predictor parameters, so fitting the predictor involves convex optimization. Such predictors can be combined with others, or recursively applied to improve performance.", "revisions": [ { "version": "v1", "updated": "2021-01-29T06:06:58.000Z" } ], "analyses": { "keywords": [ "convex optimization", "covariance prediction", "zero mean gaussian vector", "symmetric positive definite matrices", "inverse link function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }