{ "id": "2101.11999", "version": "v1", "published": "2021-01-28T13:54:07.000Z", "updated": "2021-01-28T13:54:07.000Z", "title": "Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and long-time convergence", "authors": [ "Tony Lelièvre", "Mouad Ramil", "Julien Reygner" ], "categories": [ "math.PR", "math.SP" ], "abstract": "Consider the Langevin process, described by a vector (position,momentum) in $\\mathbb{R}^{d}\\times\\mathbb{R}^d$. Let $\\mathcal O$ be a $\\mathcal{C}^2$ open bounded and connected set of $\\mathbb{R}^d$. We prove the compactness of the semigroup of the Langevin process absorbed at the boundary of the domain $D:=\\mathcal{O}\\times\\mathbb{R}^d$. We then obtain the existence of a unique quasi-stationary distribution (QSD) for the Langevin process on $D$. We also provide a spectral interpretation of this QSD and obtain an exponential convergence of the Langevin process conditioned on non-absorption towards the QSD.", "revisions": [ { "version": "v1", "updated": "2021-01-28T13:54:07.000Z" } ], "analyses": { "keywords": [ "langevin process", "long-time convergence", "cylindrical domains", "uniqueness", "unique quasi-stationary distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }