{ "id": "2101.11542", "version": "v1", "published": "2021-01-27T16:55:54.000Z", "updated": "2021-01-27T16:55:54.000Z", "title": "On Erdős's Method for Bounding the Partition Function", "authors": [ "Asaf Cohen Antonir", "Asaf Shapira" ], "comment": "To appear in Amer. Math. Monthly", "categories": [ "math.NT", "math.CO" ], "abstract": "For fixed $m$ and $R\\subseteq \\{0,1,\\ldots,m-1\\}$, take $A$ to be the set of positive integers congruent modulo $m$ to one of the elements of $R$, and let $p_A(n)$ be the number of ways to write $n$ as a sum of elements of $A$. Nathanson proved that $\\log p_A(n) \\leq (1+o(1)) \\pi \\sqrt{2n|R|/3m}$ using a variant of a remarkably simple method devised by Erd\\H{o}s in order to bound the partition function. In this short note we describe a simpler and shorter proof of Nathanson's bound.", "revisions": [ { "version": "v1", "updated": "2021-01-27T16:55:54.000Z" } ], "analyses": { "keywords": [ "partition function", "erdőss method", "positive integers congruent modulo", "nathansons bound", "shorter proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }