{ "id": "2101.10364", "version": "v1", "published": "2021-01-25T19:21:13.000Z", "updated": "2021-01-25T19:21:13.000Z", "title": "Number fields without universal quadratic forms of small rank exist in most degrees", "authors": [ "Vítězslav Kala" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "We prove that in each degree divisible by 2 or 3, there are infinitely many totally real number fields that require universal quadratic forms to have arbitrarily large rank.", "revisions": [ { "version": "v1", "updated": "2021-01-25T19:21:13.000Z" } ], "analyses": { "subjects": [ "11E12", "11E20", "11R21", "11R80" ], "keywords": [ "universal quadratic forms", "small rank", "totally real number fields", "arbitrarily large rank" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }