{ "id": "2101.10316", "version": "v1", "published": "2021-01-25T18:55:45.000Z", "updated": "2021-01-25T18:55:45.000Z", "title": "Conjugator length in Thompson's groups", "authors": [ "James Belk", "Francesco Matucci" ], "comment": "13 pages, 8 figures", "categories": [ "math.GR" ], "abstract": "We prove Thompson's group $F$ has quadratic conjugator length function. That is, for any two conjugate elements of $F$ of length $n$ or less, there exists an element of $F$ of length $O(n^2)$ that conjugates one to the other. Moreover, there exist conjugate pairs of elements of $F$ of length at most $n$ such that the shortest conjugator between them has length $\\Omega(n^2)$. This latter statement holds for $T$ and $V$ as well.", "revisions": [ { "version": "v1", "updated": "2021-01-25T18:55:45.000Z" } ], "analyses": { "subjects": [ "20F10", "20F65", "20E45" ], "keywords": [ "thompsons group", "quadratic conjugator length function", "shortest conjugator", "statement holds", "conjugate elements" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }