{ "id": "2101.09906", "version": "v1", "published": "2021-01-25T06:07:05.000Z", "updated": "2021-01-25T06:07:05.000Z", "title": "A note on Carmichael numbers in residue classes", "authors": [ "Carl Pomerance" ], "categories": [ "math.NT" ], "abstract": "Improving on some recent results of Matom\\\"aki and of Wright, we show that the number of Carmichael numbers to $X$ in a coprime residue class exceeds $X^{1/(6\\log\\log\\log X)}$ for all sufficiently large $X$ depending on the modulus of the residue class.", "revisions": [ { "version": "v1", "updated": "2021-01-25T06:07:05.000Z" } ], "analyses": { "subjects": [ "11N25" ], "keywords": [ "carmichael numbers", "coprime residue class exceeds", "sufficiently large" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }