{ "id": "2101.09501", "version": "v1", "published": "2021-01-23T13:43:26.000Z", "updated": "2021-01-23T13:43:26.000Z", "title": "Exactness of quadrature formulas", "authors": [ "Lloyd N. Trefethen" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "The standard design principle for quadrature formulas is that they should be exact for integrands of a given class, such as polynomials of a fixed degree. We show how this principle fails to predict the actual behavior in four cases: Newton-Cotes, Clenshaw-Curtis, Gauss-Legendre, and Gauss-Hermite quadrature. Three further examples are mentioned more briefly.", "revisions": [ { "version": "v1", "updated": "2021-01-23T13:43:26.000Z" } ], "analyses": { "subjects": [ "41A55", "65D32" ], "keywords": [ "quadrature formulas", "standard design principle", "gauss-hermite quadrature", "principle fails", "actual behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }