{ "id": "2101.08094", "version": "v1", "published": "2021-01-20T12:33:46.000Z", "updated": "2021-01-20T12:33:46.000Z", "title": "Generalized Turán problems for complete bipartite graphs", "authors": [ "Dániel Gerbner", "Balázs Patkós" ], "categories": [ "math.CO" ], "abstract": "For graph $G$, $F$ and integer $n$, the generalized Tu\\'an number $ex(n,G,F)$ denotes the maximum number of copies of $G$ that an $F$-free $n$-vertex graph can have. We study this parameter when both $G$ and $F$ are complete bipartite graphs.", "revisions": [ { "version": "v1", "updated": "2021-01-20T12:33:46.000Z" } ], "analyses": { "keywords": [ "complete bipartite graphs", "generalized turán problems", "vertex graph", "maximum number", "generalized tuan number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }