{ "id": "2101.07593", "version": "v1", "published": "2021-01-19T12:34:57.000Z", "updated": "2021-01-19T12:34:57.000Z", "title": "Additive bases and Niven numbers", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "Let $g \\geq 2$ be an integer. A natural number is said to be a base-$g$ Niven number if it is divisible by the sum of its base-$g$ digits. Assuming Hooley's Riemann Hypothesis for $g$, we prove that the set of base-$g$ Niven numbers is an additive basis, that is, there exists $C_g > 0$ such that every natural number is the sum of at most $C_g$ base-$g$ Niven numbers.", "revisions": [ { "version": "v1", "updated": "2021-01-19T12:34:57.000Z" } ], "analyses": { "subjects": [ "11B13", "11A63" ], "keywords": [ "niven number", "additive basis", "natural number", "assuming hooleys riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }