{ "id": "2101.05942", "version": "v1", "published": "2021-01-15T02:28:35.000Z", "updated": "2021-01-15T02:28:35.000Z", "title": "Soliton resolution for the Hirota equation with weighted Sobolev initial data", "authors": [ "Jin-Jie Yang", "Shou-Fu Tian", "Zhi-Qiang Li" ], "comment": "43 pages", "categories": [ "math.AP", "math-ph", "math.MP", "nlin.SI" ], "abstract": "In this work, the $\\overline{\\partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(\\mathbb{R})=\\{f\\in L^{2}(\\mathbb{R}): f',xf\\in L^{2}(\\mathbb{R})\\}$. The long-time asymptotic behavior of the solution $q(x,t)$ is derived in any fixed space-time cone $C(x_{1},x_{2},v_{1},v_{2})=\\left\\{(x,t)\\in \\mathbb{R}\\times\\mathbb{R}: x=x_{0}+vt ~\\text{with}~ x_{0}\\in[x_{1},x_{2}]\\right\\}$. We show that solution resolution conjecture of the Hirota equation is characterized by the leading order term $\\mathcal {O}(t^{-1/2})$ in the continuous spectrum, $\\mathcal {N}(\\mathcal {I})$ soliton solutions in the discrete spectrum and error order $\\mathcal {O}(t^{-3/4})$ from the $\\overline{\\partial}$ equation.", "revisions": [ { "version": "v1", "updated": "2021-01-15T02:28:35.000Z" } ], "analyses": { "keywords": [ "weighted sobolev initial data", "hirota equation", "soliton resolution", "initial value belong", "steepest descent method" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }