{ "id": "2101.05642", "version": "v1", "published": "2021-01-14T14:56:20.000Z", "updated": "2021-01-14T14:56:20.000Z", "title": "Ribbon tiling and character formula for periplectic Lie superalgebras", "authors": [ "Byung-Hak Hwang", "Jae-Hoon Kwon" ], "comment": "20 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "We give a combinatorial formula for the character of a finite-dimensional irreducible representation of the periplectic Lie superalgebra $\\mathfrak{p}(n)$. The character of irreducible module $L(\\mu)$ is given by a cancellation-free alternating sum over the characters of thick or thin Kac modules, $\\Delta(\\lambda)$ or $\\nabla(\\lambda)$, such that there exists a ribbon tiling of a skew Young diagram $\\lambda/\\mu$.", "revisions": [ { "version": "v1", "updated": "2021-01-14T14:56:20.000Z" } ], "analyses": { "subjects": [ "17B10", "05E10" ], "keywords": [ "periplectic lie superalgebra", "character formula", "ribbon tiling", "thin kac modules", "skew young diagram" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }