{ "id": "2101.04937", "version": "v1", "published": "2021-01-13T08:51:12.000Z", "updated": "2021-01-13T08:51:12.000Z", "title": "Supersingular $j$-invariants and the Class Number of $\\mathbb{Q}(\\sqrt{-p})$", "authors": [ "Guanju Xiao", "Lixia Luo", "Yingpu Deng" ], "categories": [ "math.NT" ], "abstract": "For a prime $p>3$, let $D$ be the discriminant of an imaginary quadratic order with $|D|< \\frac{4}{\\sqrt{3}}\\sqrt{p}$. We research the solutions of the class polynomial $H_D(X)$ mod $p$ in $\\mathbb{F}_p$ if $D$ is not a quadratic residue in $\\mathbb{F}_p$. We also discuss the common roots of different class polynomials in $\\mathbb{F}_p$. As a result, we get a deterministic algorithm (Algorithm 3) for computing the class number of $\\mathbb{Q}(\\sqrt{-p})$. The time complexity of Algorithm 3 is $\\tilde{O}(p^{1/2})$ if we use probabilistic factorization algorithms and assume the Generalized Riemann Hypothesis.", "revisions": [ { "version": "v1", "updated": "2021-01-13T08:51:12.000Z" } ], "analyses": { "keywords": [ "class number", "supersingular", "class polynomial", "invariants", "imaginary quadratic order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }