{ "id": "2101.02487", "version": "v1", "published": "2021-01-07T11:07:36.000Z", "updated": "2021-01-07T11:07:36.000Z", "title": "Quantitative ergodicity for the symmetric exclusion process with stationary initial data", "authors": [ "L. Bertini", "N. Cancrini", "G. Posta" ], "categories": [ "math.PR" ], "abstract": "We consider the symmetric exclusion process on the $d$-dimensional lattice with translational invariant and ergodic initial data. It is then known that as $t$ diverges the distribution of the process at time $t$ converges to a Bernoulli product measure. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein $\\bar d$-distance. The proof is based on the analysis of a two species exclusion process with annihilation.", "revisions": [ { "version": "v1", "updated": "2021-01-07T11:07:36.000Z" } ], "analyses": { "subjects": [ "60K35", "82C20" ], "keywords": [ "symmetric exclusion process", "stationary initial data", "quantitative ergodicity", "bernoulli product measure", "ergodic initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }