{ "id": "2101.02293", "version": "v1", "published": "2021-01-06T22:25:17.000Z", "updated": "2021-01-06T22:25:17.000Z", "title": "Most Elliptic Curves over Global Function Fields are Torsion Free", "authors": [ "Tristan Phillips" ], "comment": "8 pages. Comments welcome!", "categories": [ "math.NT" ], "abstract": "Given an elliptic curve $E$ over a global function field $K$, the Galois action on the $n$-torsion points of $E$ gives rise to a mod-n Galois representation $\\rho_{E,n}$. For $K$ satisfying some mild conditions, we show that the set of $E$ for which $\\rho_{E,n}$ is as large as possible for all $n$, has density $1$.", "revisions": [ { "version": "v1", "updated": "2021-01-06T22:25:17.000Z" } ], "analyses": { "subjects": [ "11G05", "11F80", "11N36" ], "keywords": [ "global function field", "elliptic curve", "torsion free", "mod-n galois representation", "galois action" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }