{ "id": "2101.02131", "version": "v1", "published": "2021-01-06T16:53:01.000Z", "updated": "2021-01-06T16:53:01.000Z", "title": "Theorems and Conjectures on Some Rational Generating Functions", "authors": [ "Richard P. Stanley" ], "comment": "24 pages, two figures", "categories": [ "math.CO" ], "abstract": "Let $I_n(x)=\\prod_{i=1}^n \\left( 1+x^{F_{i+1}}\\right)$, where $F_{i+1}$ denotes a Fibonacci number. Let $v_r(n)$ denote the sum of the $r$th powers of the coefficients of $I_n(x)$. Our prototypical result is that $\\sum_{n\\geq 0} v_2(n)x^n= (1-2x^2)/(1-2x-2x^2+2x^3)$. We give many related results and conjectures. A certain infinite poset $\\mathfrak{F}$ is naturally associated with $I_n(x)$. We discuss some combinatorial properties of $\\mathfrak{F}$ and a natural generalization, including a symmetric function that encodes the flag $h$-vector of $\\mathfrak{F}$.", "revisions": [ { "version": "v1", "updated": "2021-01-06T16:53:01.000Z" } ], "analyses": { "subjects": [ "05A15", "05E05", "05A10", "06A07" ], "keywords": [ "rational generating functions", "conjectures", "fibonacci number", "symmetric function", "natural generalization" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }