{ "id": "2101.02063", "version": "v1", "published": "2021-01-06T14:31:05.000Z", "updated": "2021-01-06T14:31:05.000Z", "title": "Transfer of characters for discrete series representations of the unitary groups in the equal rank case via the Cauchy-Harish-Chandra integral", "authors": [ "Allan Merino" ], "comment": "32 pages", "categories": [ "math.RT" ], "abstract": "As conjectured by T. Przebinda, the transfer of characters in the Howe's correspondence should be obtained via the Cauchy-Harish-Chandra integral. In this paper, we prove that the conjecture holds for the dual pair $(G = U(p, q), G' = U(r, s))$, $p+q = r+s$, starting with a discrete series representation $\\Pi$ of $\\widetilde{U}(p, q)$.", "revisions": [ { "version": "v1", "updated": "2021-01-06T14:31:05.000Z" } ], "analyses": { "subjects": [ "22E45", "22E46", "22E30" ], "keywords": [ "discrete series representation", "equal rank case", "cauchy-harish-chandra integral", "unitary groups", "characters" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }