{ "id": "2101.01609", "version": "v1", "published": "2021-01-05T15:51:10.000Z", "updated": "2021-01-05T15:51:10.000Z", "title": "Local central limit theorem and potential kernel estimates for a class of symmetric heavy-tailted random variables", "authors": [ "Leandro Chiarini", "Milton Jara", "Wioletta M. Ruszel" ], "comment": "33 pages", "categories": [ "math.PR" ], "abstract": "In this article, we study a class of heavy-tailed random variables on $\\mathbb{Z}$ in the domain of attraction of an $\\alpha$-stable random variable of index $\\alpha \\in (0,2)$ satisfying a certain expansion of their characteristic function. Our results include sharp convergence rates for the local (stable) central limit theorem of order $n^{- (1+ \\frac{1}{\\alpha})}$, a detailed expansion of the characteristic function of a long-range random walk with transition probability proportional to $|x|^{-(1+\\alpha)}$ and $\\alpha \\in (0,2)$ and furthermore detailed asymptotic estimates of the discrete potential kernel (Green's function) up to order $\\mathcal{O} \\left( |x|^{\\frac{\\alpha-2}{3}+\\varepsilon} \\right)$ for any $\\varepsilon>0$ small enough, when $\\alpha \\in [1,2)$.", "revisions": [ { "version": "v1", "updated": "2021-01-05T15:51:10.000Z" } ], "analyses": { "subjects": [ "60E07", "60E10", "60F05", "60G50", "60G52", "60J45" ], "keywords": [ "local central limit theorem", "symmetric heavy-tailted random variables", "potential kernel estimates" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }