{ "id": "2101.01339", "version": "v1", "published": "2021-01-05T04:03:02.000Z", "updated": "2021-01-05T04:03:02.000Z", "title": "A New Formula for the Minimum Distance of an Expander Code", "authors": [ "Sudipta Mallik" ], "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "An expander code is a binary linear code whose parity-check matrix is the bi-adjacency matrix of a bipartite expander graph. We provide a new formula for the minimum distance of such codes. We also provide a new proof of the result that $2(1-\\varepsilon) \\gamma n$ is a lower bound of the minimum distance of the expander code given by a $(m,n,d,\\gamma,1-\\varepsilon)$ expander bipartite graph.", "revisions": [ { "version": "v1", "updated": "2021-01-05T04:03:02.000Z" } ], "analyses": { "keywords": [ "minimum distance", "expander code", "expander bipartite graph", "binary linear code", "bipartite expander graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }