{ "id": "2101.00867", "version": "v1", "published": "2021-01-04T10:26:49.000Z", "updated": "2021-01-04T10:26:49.000Z", "title": "Zero-sum flows for Steiner systems", "authors": [ "Saieed Akbari", "Hamid Reza Maimani", "Leila Parsaei Majd", "Ian M. Wanless" ], "journal": "Discrete Math. 343 (2020), 112074", "doi": "10.1016/j.disc.2020.112074", "categories": [ "math.CO" ], "abstract": "Given a $t$-$(v, k, \\lambda)$ design, $\\mathcal{D}=(X,\\mathcal{B})$, a zero-sum $n$-flow of $\\mathcal{D}$ is a map $f : \\mathcal{B}\\longrightarrow \\{\\pm1,\\ldots, \\pm(n-1)\\}$ such that for any point $x\\in X$, the sum of $f$ over all blocks incident with $x$ is zero. For a positive integer $k$, we find a zero-sum $k$-flow for an STS$(u w)$ and for an STS$(2v+7)$ for $v\\equiv 1~(\\mathrm{mod}~4)$, if there are STS$(u)$, STS$(w)$ and STS$(v)$ such that the STS$(u)$ and STS$(v)$ both have a zero-sum $k$-flow. In 2015, it was conjectured that for $v>7$ every STS$(v)$ admits a zero-sum $3$-flow. Here, it is shown that many cyclic STS$(v)$ have a zero-sum $3$-flow. Also, we investigate the existence of zero-sum flows for some Steiner quadruple systems.", "revisions": [ { "version": "v1", "updated": "2021-01-04T10:26:49.000Z" } ], "analyses": { "subjects": [ "05B05", "05B20", "05C21" ], "keywords": [ "zero-sum flows", "steiner systems", "steiner quadruple systems", "cyclic sts", "blocks incident" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }