{ "id": "2012.15401", "version": "v1", "published": "2020-12-31T02:18:10.000Z", "updated": "2020-12-31T02:18:10.000Z", "title": "On some conjectures of exponential Diophantine equations", "authors": [ "Hairong Bai" ], "categories": [ "math.NT" ], "abstract": "In this paper, we consider the exponential Diophantine equation $a^{x}+b^{y}=c^{z},$ where $a, b, c$ be relatively prime positive integers such that $a^{2}+b^{2}=c^{r}, r\\in Z^{+}, 2\\mid r$ with $b$ even. That is $$a=\\mid Re(m+n\\sqrt{-1})^{r}\\mid, b=\\mid Im(m+n\\sqrt{-1})^{r}\\mid, c=m^{2}+n^{2},$$ where $m, n$ are positive integers with $m>n, m-n\\equiv1(mod 2),$ gcd$(m, n)=1.$ $(x, y, z)= (2, 2, r)$ is called the trivial solution of the equation. In this paper we prove that the equation has no nontrivial solutions in positive integers $x, y, z$ when $$r\\equiv 2(mod 4), m\\equiv 3(mod 4), m>\\max\\{n^{10.4\\times10^{11}\\log(5.2\\times10^{11}\\log n)}, 3e^{r}, 70.2nr\\}.$$ Especially the equation has no nontrivial solutions in positive integers $x, y, z$ when $$r=2, m\\equiv 3(mod 4), m>n^{10.4\\times10^{11}\\log(5.2\\times10^{11}\\log n)}.$$", "revisions": [ { "version": "v1", "updated": "2020-12-31T02:18:10.000Z" } ], "analyses": { "keywords": [ "exponential diophantine equation", "conjectures", "nontrivial solutions", "relatively prime positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }