{ "id": "2012.15142", "version": "v1", "published": "2020-12-30T13:07:23.000Z", "updated": "2020-12-30T13:07:23.000Z", "title": "On the Maximum Number of Edges in Hypergraphs with Fixed Matching and Clique Number", "authors": [ "Peter Frankl", "Erica L. L. Liu", "Jian Wang" ], "comment": "26 pages", "categories": [ "math.CO" ], "abstract": "For a $k$-graph $\\mathcal{F}\\subset \\binom{[n]}{k}$, the clique number of $\\mathcal{F}$ is defined to be the maximum size of a subset $Q$ of $[n]$ with $\\binom{Q}{k}\\subset \\mathcal{F}$. In the present paper, we determine the maximum number of edges in a $k$-graph on $[n]$ with matching number at most $s$ and clique number at least $q$ for $n\\geq 8k^2s$ and for $q \\geq (s+1)k-l$, $n\\leq (s+1)k+s/(3k)-l$. Two special cases that $q=(s+1)k-2$ and $k=2$ are solved completely.", "revisions": [ { "version": "v1", "updated": "2020-12-30T13:07:23.000Z" } ], "analyses": { "keywords": [ "clique number", "maximum number", "fixed matching", "hypergraphs" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }