{ "id": "2012.14004", "version": "v1", "published": "2020-12-27T19:39:39.000Z", "updated": "2020-12-27T19:39:39.000Z", "title": "Central Limit Theorem for $(t,s)$-sequences, I", "authors": [ "Mordechay B. Levin" ], "categories": [ "math.NT" ], "abstract": "Let $ (X_n)_{n \\geq 0} $ be a digital $(t,s)$-sequence in base $2$, $\\mathcal{P}_m =(X_n)_{n=0}^{2^m-1} $, and let $D(\\mathcal{P}_m, Y )$ be the local discrepancy of $\\mathcal{P}_m$. Let $T \\oplus Y$ be the digital addition of $T$ and $Y$, and let $$\\mathcal{M}_{s,p} (\\mathcal{P}_m) =\\Big( \\int_{[0,1)^{2s}} |D(\\mathcal{P}_m \\oplus T , Y ) |^p \\mathrm{d}T \\mathrm{d}Y \\Big)^{1/p} .$$ In this paper, we prove that $D(\\mathcal{P}_m \\oplus T , Y ) / \\mathcal{M}_{s,2} (\\mathcal{P}_m)$ weakly converge to the standard Gaussisian distribution for $m \\rightarrow \\infty$, where $T,Y$ are uniformly distributed random variables in $[0,1)^s$. In addition, we prove that \\begin{equation} \\nonumber \\mathcal{M}_{s,p} (\\mathcal{P}_m) / \\mathcal{M}_{s,2} (\\mathcal{P}_m) \\to \\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{\\infty} |u|^p e^{-u^2/2} \\mathrm{d}u \\quad {\\rm for} \\; \\; m \\to \\infty , \\;\\; p>0. \\end{equation}", "revisions": [ { "version": "v1", "updated": "2020-12-27T19:39:39.000Z" } ], "analyses": { "subjects": [ "11K38" ], "keywords": [ "central limit theorem", "standard gaussisian distribution", "local discrepancy", "uniformly distributed random variables", "digital addition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }