{ "id": "2012.14002", "version": "v1", "published": "2020-12-27T19:30:32.000Z", "updated": "2020-12-27T19:30:32.000Z", "title": "On the upper bound of the $L_2$-discrepancy of Halton's sequence", "authors": [ "Mordechay B. Levin" ], "comment": "arXiv admin note: text overlap with arXiv:1806.11498", "categories": [ "math.NT" ], "abstract": "Let $(H(n))_{n \\geq 0} $ be a $2-$dimensional Halton's sequence. Let $D_{2} ( (H(n))_{n=0}^{N-1}) $ be the $L_2$-discrepancy of $ (H_n)_{n=0}^{N-1} $. It is known that $\\limsup_{N \\to \\infty } (\\log N)^{-1} D_{2} ( H(n) )_{n=0}^{N-1} >0$. In this paper, we prove that $$D_{2} (( H(n) )_{n=0}^{N-1}) =O( \\log N) \\quad {\\rm for} \\; \\; N \\to \\infty ,$$ i.e., we found the smallest possible order of magnitude of $L_2$-discrepancy of a 2-dimensional Halton's sequence. The main tool is the theorem on linear forms in the $p$-adic logarithm.", "revisions": [ { "version": "v1", "updated": "2020-12-27T19:30:32.000Z" } ], "analyses": { "subjects": [ "11K38" ], "keywords": [ "upper bound", "discrepancy", "dimensional haltons sequence", "adic logarithm", "main tool" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }