{ "id": "2012.13660", "version": "v1", "published": "2020-12-26T01:54:43.000Z", "updated": "2020-12-26T01:54:43.000Z", "title": "Moduli of Admissible Pairs for Arbitrary Dimension, II: Functors and Moduli", "authors": [ "Nadezhda V. Timofeeva" ], "comment": "44 pages. arXiv admin note: text overlap with arXiv:1711.07816", "categories": [ "math.AG" ], "abstract": "Morphisms between the moduli functor of admissible semistable pairs and the Gieseker -- Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on a non-singular $N$-dimensional projective algebraic variety, are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\\tilde S, \\tilde L), \\tilde E)$ is isomorphic to the Gieseker -- Maruyama moduli scheme. The considerations involve all components of moduli functors and corresponding moduli scheme as they exist. Bibliography: 17 items.", "revisions": [ { "version": "v1", "updated": "2020-12-26T01:54:43.000Z" } ], "analyses": { "subjects": [ "14D20", "14F06", "14J60" ], "keywords": [ "admissible pairs", "arbitrary dimension", "maruyama moduli functor", "semistable coherent torsion-free sheaves", "dimensional projective algebraic variety" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }