{ "id": "2012.13368", "version": "v1", "published": "2020-12-24T17:51:51.000Z", "updated": "2020-12-24T17:51:51.000Z", "title": "The first $\\ell^2$-Betti number and groups acting on trees", "authors": [ "Indira Chatterji", "Sam Hughes", "Peter Kropholler" ], "comment": "6 pages", "categories": [ "math.GR" ], "abstract": "We generalise results of Thomas, Allcock, Thom-Petersen, and Kar-Niblo to the first $\\ell^2$-Betti number of quotients of certain groups acting on trees by subgroups with free actions on the edge sets of the graphs.", "revisions": [ { "version": "v1", "updated": "2020-12-24T17:51:51.000Z" } ], "analyses": { "subjects": [ "20J05", "20E08", "20F05" ], "keywords": [ "betti number", "groups acting", "generalise results", "free actions", "edge sets" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }