{ "id": "2012.13213", "version": "v1", "published": "2020-12-24T12:18:10.000Z", "updated": "2020-12-24T12:18:10.000Z", "title": "A cohomological interpretation of archimedean zeta integrals for ${\\rm GL}_3\\times {\\rm GL}_2$", "authors": [ "Takashi Hara", "Kenichi Namikawa" ], "categories": [ "math.NT" ], "abstract": "By studying an explicit form of the Eichler--Shimura map for ${\\rm GL}_3$, we describe a precise relation between critical values of the complete $L$-function for the Rankin--Selberg convolution ${\\rm GL}_3 \\times {\\rm GL}_2$ and the cohomological cup product of certain rational cohomology classes which are uniquely determined up to rational scalar multiples from the cuspidal automorphic representations under consideration. This refines rationality results on critical values due to Raghuram et al.", "revisions": [ { "version": "v1", "updated": "2020-12-24T12:18:10.000Z" } ], "analyses": { "subjects": [ "11F67", "11F75", "11F70" ], "keywords": [ "archimedean zeta integrals", "cohomological interpretation", "refines rationality results", "cuspidal automorphic representations", "rational scalar multiples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }