{ "id": "2012.12666", "version": "v1", "published": "2020-12-23T14:00:46.000Z", "updated": "2020-12-23T14:00:46.000Z", "title": "On local criteria for the unit equation and the asymptotic Fermat's Last Theorem", "authors": [ "Nuno Freitas", "Alain Kraus", "Samir Siksek" ], "categories": [ "math.NT" ], "abstract": "Let F be a totally real number field of odd degree. We prove several purely local criteria for the asymptotic Fermat's Last Theorem to hold over F, and also for the non-existence of solutions to the unit equation over F. For example, if 2 totally ramifies and 3 splits completely in F, then the asymptotic Fermat's Last Theorem holds over F.", "revisions": [ { "version": "v1", "updated": "2020-12-23T14:00:46.000Z" } ], "analyses": { "subjects": [ "11D41" ], "keywords": [ "asymptotic fermats", "unit equation", "totally real number field", "theorem holds", "purely local criteria" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }