{ "id": "2012.12568", "version": "v1", "published": "2020-12-23T09:55:12.000Z", "updated": "2020-12-23T09:55:12.000Z", "title": "$0$-Hecke modules for Young row-strict quasisymmetric Schur functions", "authors": [ "Joshua Bardwell", "Dominic Searles" ], "comment": "22 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "We construct modules of the $0$-Hecke algebra whose images under the quasisymmetric characteristic map are the Young row-strict quasisymmetric Schur functions. This provides a representation-theoretic interpretation of this basis of quasisymmetric functions, answering a question of Mason and Niese (2015). Additionally, we classify when these modules are indecomposable.", "revisions": [ { "version": "v1", "updated": "2020-12-23T09:55:12.000Z" } ], "analyses": { "subjects": [ "05E05", "20C08", "05E10" ], "keywords": [ "young row-strict quasisymmetric schur functions", "hecke modules", "quasisymmetric characteristic map", "construct modules", "hecke algebra" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }