{ "id": "2012.12484", "version": "v1", "published": "2020-12-23T04:42:58.000Z", "updated": "2020-12-23T04:42:58.000Z", "title": "Further aspects of $\\mathcal{I}^{\\mathcal{K}}$-convergence in Topological Spaces", "authors": [ "Ankur Sharmah", "Debajit Hazarika" ], "comment": "8 page", "categories": [ "math.GN" ], "abstract": "In this paper, we obtain some interesting results on $\\mathcal{I}^\\mathcal{K}$-convergence as well as on the relationships between different convergence modes namely $\\mathcal{I}$, $\\mathcal{K}$, $\\mathcal{I}^\\mathcal{K}$, $\\mathcal{I}^{\\mathcal{K}^*}$, $\\mathcal{I} \\cup \\mathcal{K}$ and $(\\mathcal{I} \\cup \\mathcal{K})^*$. We also introduce a topological space namely $\\mathcal{I}^\\mathcal{K}$-sequential space and investigate some of its properties. $\\mathcal{I}^\\mathcal{K}$-notions of ideal cluster points and ideal limit points of a function are also introduced and characterized.", "revisions": [ { "version": "v1", "updated": "2020-12-23T04:42:58.000Z" } ], "analyses": { "subjects": [ "54A20", "40A05", "40A35" ], "keywords": [ "topological space", "ideal cluster points", "ideal limit points", "convergence modes", "sequential space" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }