{ "id": "2012.12140", "version": "v1", "published": "2020-12-22T16:23:26.000Z", "updated": "2020-12-22T16:23:26.000Z", "title": "Betti structures of hypergeometric equations", "authors": [ "Davide Barco", "Marco Hien", "Andreas Hohl", "Christian Sevenheck" ], "categories": [ "math.AG", "math.CV" ], "abstract": "We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann-Hilbert correspondence of D'Agnolo-Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions of such systems are defined over certain subfields of the complex numbers. The proof uses a description of the hypergeometric systems as exponentially twisted Gauss-Manin systems of certain Laurent polynomials.", "revisions": [ { "version": "v1", "updated": "2020-12-22T16:23:26.000Z" } ], "analyses": { "subjects": [ "32C38", "14F10", "32S40" ], "keywords": [ "irregular riemann-hilbert correspondence", "study betti structures", "group theoretic criterion", "confluent hypergeometric equations", "laurent polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }