{ "id": "2012.11069", "version": "v1", "published": "2020-12-21T01:12:21.000Z", "updated": "2020-12-21T01:12:21.000Z", "title": "Anosov-Katok constructions for quasi-periodic $\\mathrm{SL}(2,R)$ cocycles", "authors": [ "Nikolaos Karaliolios", "Xu Xu", "Qi Zhou" ], "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "We prove that if the frequency of the quasi-periodic $\\mathrm{SL}(2,\\R)$ cocycle is Diophantine, then the following properties are dense in the subcritical regime: for any $\\frac{1}{2}<\\kappa<1$, the Lyapunov exponent is exactly $\\kappa$-H\\\"older continuous; the extended eigenstates of the potential have optimal sub-linear growth; and the dual operator associated a subcritical potential has power-law decay eigenfunctions. The proof is based on fibered Anosov-Katok constructions for quasi-periodic $\\mathrm{SL}(2,\\R)$ cocycles.", "revisions": [ { "version": "v1", "updated": "2020-12-21T01:12:21.000Z" } ], "analyses": { "keywords": [ "quasi-periodic", "power-law decay eigenfunctions", "optimal sub-linear growth", "dual operator", "fibered anosov-katok constructions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }