{ "id": "2012.09652", "version": "v1", "published": "2020-12-17T15:04:17.000Z", "updated": "2020-12-17T15:04:17.000Z", "title": "Constructible sheaves and functions up to infinity", "authors": [ "Pierre Schapira" ], "categories": [ "math.AG" ], "abstract": "Posted here for easier accessibility, the first part recalls classical results on constructible functions and their Euler calculus. Next, we introduce the natural and new notions of \"constructible sheaves up to infinity and constructible functions up to infinity\" and study the operations on these objects. We show in particular how the $\\gamma$-topology for constructible functions could be an efficient tool for TDA.", "revisions": [ { "version": "v1", "updated": "2020-12-17T15:04:17.000Z" } ], "analyses": { "subjects": [ "55N99", "32B20", "32S60" ], "keywords": [ "constructible sheaves", "constructible functions", "first part recalls classical results", "euler calculus", "efficient tool" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }