{ "id": "2012.08411", "version": "v2", "published": "2020-12-15T16:44:23.000Z", "updated": "2020-12-31T10:39:08.000Z", "title": "Splitting Subspaces of Linear Operators over Finite Fields", "authors": [ "Divya Aggarwal", "Samrith Ram" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "Let $V$ be a vector space of dimension $N$ over the finite field $\\mathbb{F}_q$ and $T$ be a linear operator on $V$. Given an integer $m$ that divides $N$, an $m$-dimensional subspace $W$ of $V$ is $T$-splitting if $V=W\\oplus TW\\oplus \\cdots \\oplus T^{d-1}W$ where $d=N/m$. Let $\\sigma(m,d;T)$ denote the number of $m$-dimensional $T$-splitting subspaces. Determining $\\sigma(m,d;T)$ for an arbitrary operator $T$ is an open problem. We prove that $\\sigma(m,d;T)$ depends only on the similarity class type of $T$ and give an explicit formula in the special case where $T$ is cyclic and nilpotent. We also show that $\\sigma(m,d;T)$ is a polynomial in $q$.", "revisions": [ { "version": "v2", "updated": "2020-12-31T10:39:08.000Z" } ], "analyses": { "keywords": [ "finite field", "linear operator", "splitting subspaces", "similarity class type", "vector space" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }