{ "id": "2012.08204", "version": "v2", "published": "2020-12-15T10:51:18.000Z", "updated": "2021-01-05T11:29:46.000Z", "title": "Fluctuations of the Magnetization for Ising models on Erdős-Rényi Random Graphs -- the Regimes of Low Temperature and External Magnetic Field", "authors": [ "Zakhar Kabluchko", "Matthias Löwe", "Kristina Schubert" ], "comment": "30 pages", "categories": [ "math.PR" ], "abstract": "We continue our analysis of Ising models on the (directed) Erd\\H{o}s-R\\'enyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\to \\infty$.", "revisions": [ { "version": "v2", "updated": "2021-01-05T11:29:46.000Z" } ], "analyses": { "subjects": [ "82B44", "82B20" ], "keywords": [ "external magnetic field", "erdős-rényi random graphs", "ising models", "magnetization", "fluctuations" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }