{ "id": "2012.07781", "version": "v2", "published": "2020-12-14T18:19:33.000Z", "updated": "2021-08-04T15:07:03.000Z", "title": "Fourier optimization and quadratic forms", "authors": [ "Andrés Chirre", "Oscar E. Quesada-Herrera" ], "comment": "31 pages. Minor edits. To appear in Q. J. Math", "categories": [ "math.NT", "math.CA" ], "abstract": "We prove several results about integers represented by positive definite quadratic forms, using a Fourier analysis approach. In particular, for an integer $\\ell\\geq 1$, we improve the error term in the partial sums of the number of representations of integers that are a multiple of $\\ell$. This allows us to obtain unconditional Brun-Titchmarsh-type results in short intervals, and a conditional Cram\\'er-type result on the maximum gap between primes represented by a given positive definite quadratic form.", "revisions": [ { "version": "v2", "updated": "2021-08-04T15:07:03.000Z" } ], "analyses": { "subjects": [ "11E16", "11M26", "11N05", "11R29", "11R42", "42B10" ], "keywords": [ "fourier optimization", "positive definite quadratic form", "unconditional brun-titchmarsh-type results", "fourier analysis approach", "conditional cramer-type result" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }