{ "id": "2012.04914", "version": "v1", "published": "2020-12-09T08:34:26.000Z", "updated": "2020-12-09T08:34:26.000Z", "title": "On the least common multiple of random $q$-integers", "authors": [ "Carlo Sanna" ], "categories": [ "math.NT" ], "abstract": "For every positive integer $n$ and for every $\\alpha \\in [0, 1]$, let $\\mathcal{B}(n, \\alpha)$ denote the probabilistic model in which a random set $\\mathcal{A} \\subseteq \\{1, \\dots, n\\}$ is constructed by picking independently each element of $\\{1, \\dots, n\\}$ with probability $\\alpha$. Cilleruelo, Ru\\'{e}, \\v{S}arka, and Zumalac\\'{a}rregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of $\\mathcal{A}$. Let $q$ be an indeterminate and let $[k]_q := 1 + q + q^2 + \\cdots + q^{k-1} \\in \\mathbb{Z}[q]$ be the $q$-analog of the positive integer $k$. We determine the expected value and the variance of $X := \\operatorname{deg} \\operatorname{lcm}\\!\\big([\\mathcal{A}]_q\\big)$, where $[\\mathcal{A}]_q := \\big\\{[k]_q : k \\in \\mathcal{A}\\big\\}$. Then we prove an almost sure asymptotic formula for $X$, which is a $q$-analog of the result of Cilleruelo et al.", "revisions": [ { "version": "v1", "updated": "2020-12-09T08:34:26.000Z" } ], "analyses": { "subjects": [ "11N37", "11B99" ], "keywords": [ "common multiple", "sure asymptotic formula", "positive integer", "cilleruelo", "random set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }