{ "id": "2012.04370", "version": "v1", "published": "2020-12-08T11:28:25.000Z", "updated": "2020-12-08T11:28:25.000Z", "title": "Percolation in the Boolean model with convex grains in high dimension", "authors": [ "Jean-Baptiste Gouéré", "Florestan Labéy" ], "categories": [ "math.PR" ], "abstract": "We investigate percolation in the Boolean model with convex grains in high dimension. For each dimension d, one fixes a compact, convex and symmetric set K $\\subset$ R d with non empty interior. In a first setting, the Boolean model is a reunion of translates of K. In a second setting, the Boolean model is a reunion of translates of K or $\\rho$K for a further parameter $\\rho$ $\\in$ (1, 2). We give the asymptotic behavior of the percolation probability and of the percolation threshold in the two settings.", "revisions": [ { "version": "v1", "updated": "2020-12-08T11:28:25.000Z" } ], "analyses": { "keywords": [ "boolean model", "convex grains", "high dimension", "non empty interior", "translates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }