{ "id": "2012.04014", "version": "v1", "published": "2020-12-07T19:33:58.000Z", "updated": "2020-12-07T19:33:58.000Z", "title": "Reductive subalgebras of semisimple Lie algebras and Poisson commutativity", "authors": [ "Dmitri I. Panyushev", "Oksana S. Yakimova" ], "categories": [ "math.RT", "math.SG" ], "abstract": "Let $\\mathfrak g$ be a semisimple Lie algebra, $\\mathfrak h\\subset\\mathfrak g$ a reductive subalgebra such that $\\mathfrak h^\\perp$ is a complementary $\\mathfrak h$-submodule of $\\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\\mathcal S}(\\mathfrak g)$ by taking the subalgebra ${\\mathcal Z}$ generated by the bi-homogeneous components of all $H\\in{\\mathcal S}(\\mathfrak g)^{\\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\\mathcal Z}$. As a by-product, we prove that ${\\mathcal Z}$ is Poisson commutative if $\\mathfrak h$ is abelian and describe ${\\mathcal Z}$ in the special case when $\\mathfrak h$ is a Cartan subalgebra. In this case, ${\\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\\mathrm{dim}\\,\\mathfrak g+\\mathrm{rk}\\,\\mathfrak g)/2$.", "revisions": [ { "version": "v1", "updated": "2020-12-07T19:33:58.000Z" } ], "analyses": { "subjects": [ "17B63", "14L30", "17B08", "17B20", "22E46" ], "keywords": [ "semisimple lie algebra", "poisson commutativity", "reductive subalgebra", "maximal transcendence degree", "symmetric algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }